

EXPERIMENT NUMBER - 3.10

STUDENT NAME: DIVYANSH PANDEY BRANCH: PHYSICS FOR ENG. UID:21BCS11270 DOP: 01/06/2022 GRP: 510 B

- <u>AIM OF THE EXPERIMENT TO PLOT A GRAPH CONNECTING</u> PHOTOCURRENT AND APPPLIED POTENTIAL
- <u>APPARATUS-</u>

SUBJECT: FOCP

- TARGET MATERIAL
 LIGHT SOURCE
 VOLTMETER
 AMMETER
 CONNECTING WIRES
- OBSERVATIONS-
- 1. MATERIAL:- COPPER
- 2. AREA OF PLATE: 0.3cm²
 - <u>CASE 1:-</u>WHEN INTENSITY IS CONSTANT AND WAELENGTH IS CHANGING.

INTENSITY= 10 w/m^2

WE WILL BE TAKING VALUES OF VOLTAGE AND CURRENT AT 3 DIFFERENT VALUES OF WAVELEGTH.

<u>CASE 1:</u>

WAVELENGTH = 140 nm

SR.NO.	APPLIED VOLTAGE(V)	CURRENT(MICRO	
1.	0V	12.51mA	
2.	-0.50V	11.01mA	
3.	-1.00V	9.51mA	
4.	-1.50V	8.01mA	
5.	-2.00V	6.51mA	

CASE 2:

WAVELENGTH = 170 nm

SR. NO.	APPLIED VOLTAGE(V)	CURRENT(mA)	
1.	0V	7.81mA	
2.	-0.50V	6.31mA	
3.	-1.00V	4.81mA	
4.	-1.50V	3.31mA	
5.	-2.00V	1.81mA	

<u>CASE 3:</u>

WAVELENGTH = 220 nm

SR.NO.	APPLIED VOLTAGE(V)	CURRENT(mA)	
1.	0V	2.99mA	
2.	-0.20V	2.39mA	
3.	-0.50V	1.49mA	
4.	-0.90V	0.29mA	
5.	-1.00V	0.00mA	

2

<u>CASE 2:-</u> WHEN WAVEENGTH IS CONSTANT AND INTENSITY IS CHANGING.

WAVELENGTH=100 nm

WE WILL BE TAKING VALUES OF VOLTAGE AND CURRENT AT 3 DIFFERENT VALUES OF WAVELEGTH.

<u>CASE 1:</u>

INTENSITY = 5 w/m^2

SR.NO.	APPLIED VOLTAGE(V)	CURRENT(mA)	
1.	0V	11.57mA	
2.	-1.80V	8.87mA	
3.	-3.00V	7.07mA	
4.	-5.50V	3.32mA	
5.	-7.70V	0.02mA	

<u>CASE 2</u>:

INTENSITY = 15 w/m^2

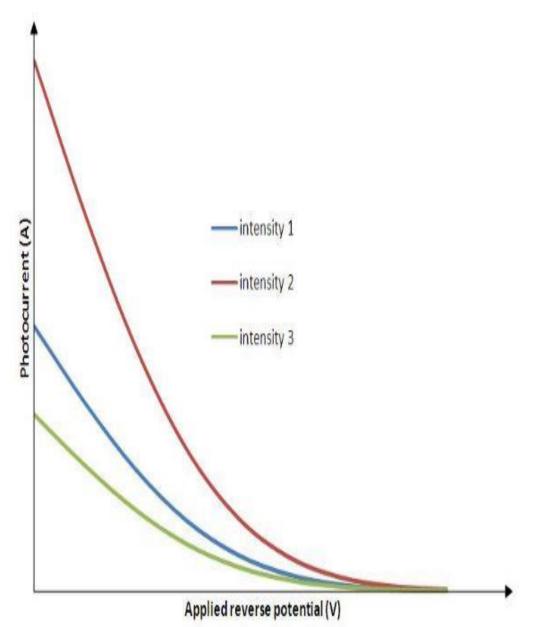
SR.NO.	APPLIED VOLTAGE(V)	CURRENT(mA)	
1.	0V	34.72mA	
2.	-1.80V	26.62mA	
3.	-3.00V	21.22mA	
4.	-5.50V	9.97mA	
5.	-7.70V	0.07mA	

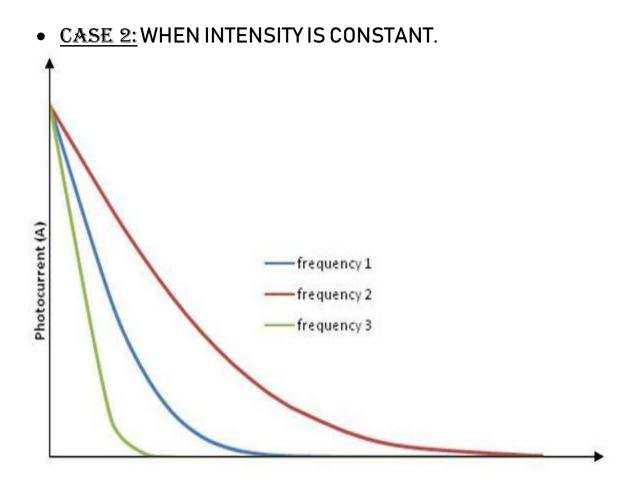
3

<u>CASE 3</u>:

INTENSITY = 25 w/m^2

SR.NO.	APPLIED VOLTAGE(V)	CURRENT(A)	
1.	0V	57.87mA	
2.	-1.80V	44.37mA	
3.	-3.00V	35.37mA	
4.	-5.50V	16.62mA	
5.	-7.70V	0.12mA	




• <u>GRAPH (ATTACH IF ANY)-</u>

• CASE 1: WHEN WAVELENGTH IS CONSTANT.

Applied reverse potential (V)

• RESULTS AND DISCUSSION-

Plot graph between photocurrent and applied reverse voltage. The energy in light comes in small packets. Each of these packets is called a quantum of energy or a photon. ... From this representation it becomes clear that the low wavelength photons have high energy while the high wavelength photons have relatively low energy.

• LEARNING OUTCOMES

- 1. Remember the concepts related to fundamentals of C language, draw flowcharts and write algorithm/pseudocode.
- 2. Understand the way of execution and debug programs in C language.
- 3. Apply various constructs, loops, functions to solve mathematical and scientific problem.
- 4. Analyze the dynamic behavior of memory by the use of pointers.
- 5. Design and develop modular programs for real world problems using control structure and selection structure.

EVALUATION COLUMN (To be filled by concerned faculty only)

<u>Sr. No.</u>	Parameters	<u>Maximu m</u> <u>Marks</u>	<u>Marks</u> Obtaine d
1.	Worksheet Completion including writing learning objective/Outcome	10	
2.	Post-Lab Quiz Result	5	
3.	Student engagement in Simulation/ Performance/ Pre-Lab Questions	5	
4.	Total Marks	20	